Part Number Hot Search : 
8EVKIT 4425B MAX5924D EMD72 CDLL4148 P0080 MC74VH SG55461
Product Description
Full Text Search
 

To Download IRFS7437-7PPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet s d g fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free  halogen free applications  brushed motor drive applications  bldc motor drive applications  pwm inverterized topologies  battery powered circuits  half-bridge and full-bridge topologies  electronic ballast applications  synchronous rectifier applications  resonant mode power supplies  or-ing and redundant power switches  dc/dc and ac/dc converters gds gate drain source           4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 1.0 2.0 3.0 4.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) i d = 100a t j = 25c t j = 125c 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 300 i d , d r a i n c u r r e n t ( a ) limited by package v dss 40v r ds(on) typ. 1.1m . 1. i d (silicon limited) 295a i d (package limited) 195a   
     
  
            
   form quantity tube 50 IRFS7437-7PPBF tape and reel left 800 irfs7437trl7pp base part number package type standard pack orderable part number IRFS7437-7PPBF d2pak-7pin
    
  
          
    
   calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 195a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
  repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.069mh r g = 50 , i as = 100a, v gs =10v.  i sd 100a, di/dt 1288a/ s, v dd v (br)dss , t j 175c.  pulse width 400 s; duty cycle 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.
       !"#$ limited by t jmax , starting t j = 25c, l = 0.069mh,r g = 50 , i as = 40a, v gs =10v. absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) avalanche characteristics e as (thermally limited) single pulse avalanche energy  e as (thermally limited) single pulse avalanche energy  i ar avalanche current  a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r  ??? 0.65 r  ??? 40 c/w a c 300 344 see fig. 14, 15, 22a, 22b 20 1.5 mj 231 3.5 max. 295  208  1040 195 796 -55 to + 175 static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 ??? ??? v . 0.0 1.1 1. 1.7 ??? m v gs(th) gate threshold voltage 2.2 ??? 3.9 v i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 2.2 ??? conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1.0ma v gs = 10v, i d = 100a  v ds = v gs , i d = 150 a v gs = 20v v gs = -20v v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v gs = 6.0v, i d = 50a 
    
  
            
    
 s d g dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 122 ??? ??? s q g total gate charge ??? 150 225 nc q gs gate-to-source charge ??? 41 ??? q gd gate-to-drain ("miller") charge ??? 51 ??? q sync total gate charge sync. (q g - q gd ) ??? 99 ??? t d(on) turn-on delay time ??? 18 ??? ns t r rise time ???62??? t d(off) turn-off delay time ???78??? t f fall time ??? 51 ??? c iss input capacitance ??? 7437 ??? pf c oss output capacitance ??? 1097 ??? c rss reverse transfer capacitance ??? 748 ??? c oss eff. (er) effective output capacitance (energy related)  ??? 1314 ??? c oss eff. (tr) effective output capacitance (time related)  ??? 1735 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 285  a (body diode) i sm pulsed source current ??? ??? 1040 a (body diode)  v sd diode forward voltage ??? 1.0 1.3 v t rr reverse recovery time ??? 37 ??? ns t j = 25c v r = 34v, ???38??? t j = 125c i f = 100a q rr reverse recovery charge ??? 34 ??? nc t j = 25c di/dt = 100a/ s  ???36??? t j = 125c i rrm reverse recovery current ??? 1.8 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0 mhz v gs = 0v, v ds = 0v to 32v v gs = 0v, v ds = 0v to 32v  t j = 25c, i s = 100a, v gs = 0v  integral reverse p-n junction diode. mosfet symbol showing the r g = 2.7 10  v dd = 20v i d = 100a, v ds = 20v, v gs = 10v conditions v ds = 10v, i d = 100a v ds = 20v i d = 100a i d = 30a
    
  
          
    
 fig 3. typical output characteristics fig 5. typical transfer characteristics fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 8. typical gate charge vs. gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.5v 6.0v 5.5v bottom 5.0v 60 s pulse width tj = 25c 5.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 5.0v 60 s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.5v 6.0v 5.5v bottom 5.0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 100a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20 40 60 80 100 120 140 160 180 200 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 100a 2 3 4 5 6 7 8 9 v gs , gate-to-source voltage (v) 1.0 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 10v 60 s pulse width
    
  
            
    
 fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy fig 13. typical on-resistance vs. drain current -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 40 41 42 43 44 45 46 47 48 49 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1.0ma 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v sd , source-to-drain voltage (v) 1.0 10 100 1000 10000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -5 0 5 10 15 20 25 30 35 40 v ds, drain-to-source voltage (v) -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 e n e r g y ( j ) 0 200 400 600 800 1000 1200 i d , drain current (a) 0.0 2.0 4.0 6.0 8.0 10.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) v gs = 6.0v v gs = 7.0v v gs = 8.0v v gs =10v 0.1 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc limited by package
 !   
  
          
    
 fig 14. maximum effective transient thermal impedance, junction-to-case fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 100a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse)
 "   
  
            
    
  #$%& 
'%('  ) fig 17. threshold voltage vs. temperature 
#$%& 
(*'  )  #$%& 
'%('  )   #$%& 
(*'  ) -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 5.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150 a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 12 i r r m ( a ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 12 i r r m ( a ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 50 100 150 200 250 300 q r r ( n c ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 50 100 150 200 250 300 q r r ( n c ) i f = 100a v r = 34v t j = 25c t j = 125c
 +   
  
          
    
 fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 22. ,

'%')$(  for n-channel hexfet   power mosfets  
 

 ?  
  
  ?     ?     
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period - %  &'% ()*( +  +*  - + - + + + - - -     %  ?  

! "  ?  
# $%$$ ?   
! 
& 
'' ? $%$$(%


  
 
d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f %   )
* 1 + 
& 
 0.1 %  %   $,$$ % + - %  % 
 .   
  
            
    
 d 2 pak - 7 pin package outline dimensions are shown in millimeters (inches)  
         
    
    
  
          
    
 d 2 pak - 7 pin part marking information d 2 pak - 7 pin tape and reel  
         
     ywwp irfs7437-7p assembly lot code international rectifier logo part number date code y = last digit of year ww = work week p = lead-free lc lc
    
  
            
    
 /0 
 

 12 &2))
)&
 #
)%) //3*4 
* %'
' 4 ,
 %
 
 &'

 
2&2
)

# )&) ///5&& '

677( 
&
  ms l 1 (per je de c j-s t d-020d ??? ) rohs compliant (per jedec jesd47f ??? guidelines) yes qualification information ? industrial ?? qualification level d 2 pak-7pin moisture sensitivity level ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ revision history date comment ? updated data sheet based on corporate template. ? updated package outline and part marking on page 9 & 10. ? updated e as (l =1mh) = 796mj on page 2 ? updated note 10 ?limited by t jmax , starting t j = 25c, l = 1mh, r g = 50 , i as = 40a, v gs =10v?. on page 2 4/30/2014 2/19/2015


▲Up To Search▲   

 
Price & Availability of IRFS7437-7PPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X